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NON-MARKOVIAN STATE-DEPENDENT NETWORKS

IN CRITICAL LOADING
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� We establish a heavy traffic limit theorem for the queue-length process in a critically loaded single
class queueing network with state-dependent arrival and service rates. A distinguishing feature
of our model is non-Markovian state dependence. The limit stochastic process is a continuous-
path reflected process on the nonnegative orthant. We give an application to a generalized Jackson
network with state-dependent rates.

Keywords Diffusion approximation; Non-Markovian networks; State-dependent net-
works; Weak convergence.

Mathematics Subject Classification Primary 60F17; Secondary 60K25, 60K30, 90B15.

1. INTRODUCTION

Queueing systems with arrival and (or) service rates depending on the
system’s state arise in various application areas, which include manufac-
turing, storage, service engineering, and communication and computer
networks. When human servers are involved, longer queues may lead to
customers being discouraged to join the queue or may affect productivity.
(We provide more detail in Section 5.) State-dependent features are present
in congestion control protocols in communication networks, such as TCP
(see Refs.[1,3,11,14,20] and references therein).

In this paper, we consider an open network of single server queues with
the arrival and service rates depending on the queue lengths. The network
consists of K single-server stations indexed 1 through K . Each station has an
infinite capacity buffer and the customers are served according to the first-
in-first-out discipline. The arrivals of customers at the stations occur both
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44 Lee and Puhalskii

externally, from the outside, and internally, from the other stations. Upon
service completion at a station, a customer is either routed to another station
or exits the network. Every customer entering the network eventually leaves
it. A distinguishing feature of the model is non-Markovian state dependence.
More specifically, the number of customers at station i, where i = 1, 2, . . . ,K ,
is governed by the following equations:

Qi (t) =Qi (0) + Ai (t) + Bi (t) − Di (t),

Ai (t) =N A
i

(∫ t

0
λi (Q (s))ds

)
,

Bi (t) =
K∑

j=1

� j i
(
D j (t)

)
,

Di (t) =N D
i

(∫ t

0
μi (Q (s))1{Qi (s)>0}ds

)
,

(1.1)

where Q(s) = (Q1(s), . . . ,QK (s)) denotes the vector of the queue lengths
at the stations at time s. The quantities N A

i (t) and N D
i (t) represent the

number of exogenous arrivals and the maximal number of customers that
can be served, respectively, at station i by time t under “nominal” conditions,
� j i (m) represents the number of customers routed from station j to station
i out of the first m customers served at station j, and λi (Q(t)) and μi (Q(t))
represent instantaneous exogenous arrival and service rates, respectively, for
station i at time t given the queue length vector Q(t). Thus, Ai (t) represents
the cumulative number of exogenous arrivals by time t at station i, Di (t)
represents the cumulative number of departures by time t from station i,
and Bi (t) represents the cumulative number of customers routed to station
i from the other stations by time t. The quantities Qi (0), N A

i (t), N D
i (t), and

�i j (m) are referred to as network primitives. Generalized Jackson networks
is a special case of (1.1) where the N A

i and N D
i are renewal processes, the�i j

are Bernoulli processes, and λi (·) = μi (·) = 1.
Our goal is to obtain limit theorems in critical loading for the queue

length processes akin to diffusion approximation results available for gener-
alized Jackson networks; see Reiman[19]. Such limit theorems are useful to
obtain approximations to various quantities of interest. For instance, using
the limit stochastic processes, one can approximate, via either numerical or
analytical methods, the mean/variance of the queue length or the fraction
of idle time for particular service stations (cf. Refs.[11,12]).

The results on the heavy traffic asymptotics for state-dependent rates
available in the literature are confined mostly to the case of diffusion lim-
its for Markovian models; see Yamada[21], Mandelbaum and Pats[14], and
Chapter 8 of Kushner[11]. Yamada[21] and Mandelbaum and Pats[14] draw
on the work of Krichagina[10], who studies a Markovian closed network with

D
ow

nl
oa

de
d 

by
 [

C
hi

ho
on

 L
ee

] 
at

 1
1:

56
 0

6 
Fe

br
ua

ry
 2

01
5 



Non-Markovian State-Dependent Networks 45

state-dependent rates. They consider a case of the model (1.1), where the
primitive arrival and service processes are standard Poisson. Kushner[11] also
includes a treatment of that model (see Theorem 2.1, p. 318); however,
their basic assumptions are formulated in terms of the conditional distri-
butions of the interarrival (or service) intervals (or the routing), given the
“past.” Those authors obtain results in which the drift coefficients of the
limit diffusion processes are state-dependent and the diffusion coefficients
may be either constant or state-dependent, which is determined by the scal-
ing used. Yamada[21] and Kushner[11] assume critical loading and obtain
mostly diffusions with state-dependent diffusion coefficients, although Ya-
mada[21] considers an example with a constant diffusion coefficient where
the drift has to be linear and Theorem 2.1 on p. 318 of Kushner[11] con-
cerns the case of constant diffusion coefficients. In contrast, Mandelbaum
and Pats[14] do not restrict their analysis to critical loading, and their
limits have constant diffusion coefficients. Mandelbaum and Pats[14] and
Kushner[11] also allow the process of routing the customers inside the net-
work to be state-dependent; however, their reasoning seems to be unsub-
stantiated, as discussed in Section 2. Section 7 of Yamada[21] is concerned
with a non-Markovian case where the processes N A

i are standard Poisson,
the processes N D

i are renewal processes, and μi (·) = 1. It is also mentioned
that an extension to the case of renewal arrivals with λi (·) = 1 and standard
Poisson processes N D

i is possible.
The main contribution of this piece of work is incorporating general

arrival and service processes. This is achieved by applying an approach dif-
ferent from the one used by Yamada[21], Mandelbaum and Pats[14], and
Kushner[11]. The proofs of those authors rely heavily on the martingale weak
convergence theory. They are quite involved, on the one hand, and do not
seem to be easily extendable to more general arrival and service processes,
on the other hand. In our approach, we, in a certain sense, return to the
basics and employ ideas that have proved their worth in the setup of general-
ized Jackson networks. We show that continuity considerations may produce
stronger conclusions at less complexity. Our main result states that if the
network primitives satisfy certain limit theorems with continuous-path lim-
its, then the multidimensional queue-length processes, when suitably scaled
and normalized, converge to a reflected continuous-path process on the
nonnegative orthant. If the limits of the primitives are diffusion processes,
the limit stochastic process is a reflected diffusion with state-dependent drift
coefficients and constant diffusion coefficients. The scaling we use does not
capture the case of state-dependent diffusion coefficients. We also give an
application to generalized Jackson networks with state-dependent rates, thus
providing an extension of Reiman’s[19] results and particularise further by
looking at a tandem queue of human servers. In addition, we bridge certain
gaps in the reasoning of Yamada[21], Mandelbaum and Pats[14], and Kush-
ner[11]. The proofs in Refs.[21,14,11] assume that the functions λi (·) and μi (·)
are bounded and allude to a “truncation argument” for the unbounded
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46 Lee and Puhalskii

case omitting the details. In particular, existence and uniqueness for (1.1)
is not fully addressed. We prove both the existence and uniqueness of a
solution to equations (1.1) and the limit theorem under linear growth con-
ditions. A more detailed discussion of earlier results is provided at the end of
Section 2.

A different class of results on diffusion approximation concerns queue-
ing systems modeled on the many-server queue with a large number of
servers. In such a system the service rate decreases to zero gradually with
the number in the system—whereas in the model considered here, it has a
jump at zero (see (2.1d))—so the limit process is an unconstrained diffusion;
see Mandelbaum, Massey, and Reiman[13], Pang, Talreja, and Whitt[16], and
references therein. We do not consider those setups in this paper.

The exposition is organised as follows. In the next section, we state and
discuss our main result. The proof is provided in Section 3. In Section 4, an
application to state-dependent generalized Jackson networks is presented.
Section 5 spells out the process for a tandem queue. The appendix contains
a proof of the pathwise queue-length construction underlying the definition
of the model.

Some notational conventions are in order. All vectors are understood as
column vectors, |x| denotes the Euclidean length of a vector x, its compo-
nents are denoted by xi , unless mentioned otherwise, superscript T is used
to denote the transpose, 1A stands for the indicator function of an event
A, δi j represents Kronecker’s delta, �a� denotes the integer part of a real
number a, IN denotes the set of natural numbers, and Z+ denotes the set
of nonnegative integers. We use D([0,∞), IR�) to represent the Skorohod
space of right continuous IR�-valued functions with left hand limits which is
endowed with the Skorohod topology, ⇒ represents convergence in distri-
bution of random elements with values in an appropriate metric space; see
Billingsley[2] and Ethier and Kurtz[6] for more information. We also recall
that a sequence V n of stochastic processes with trajectories in a Skorohod
space is said to be C-tight if the sequence of the laws of the V n is tight, and if
all limit points of the sequence of the laws of the V n are laws of continuous-
path processes (see, e.g., Definition 3.25 and Proposition 3.26 in Chapter VI
of Jacod and Shiryaev[9]).

2. THE MAIN RESULT

Let (�,F,P) be a probability space on which all random variables
considered in this paper are assumed to be defined. We consider a se-
quence of networks indexed by n with a similar structure to the one de-
scribed in the Introduction. For the n-th network and for i ∈ IK , where
IK = {1, 2, . . . ,K}, let An

i (t) represent the cumulative number of customers
that arrive at station i from outside the network, let Bn

i (t) represent the
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Non-Markovian State-Dependent Networks 47

number of endogeneous arrivals at station i, and let Dn
i (t) represent

the cumulative number of customers that are served at station i during
the time interval [0, t]. Let J ⊆ IK represent the set of stations with ac-
tual exogenous arrivals so that An

i (t) = 0 if i 	∈ J . We call An = (An
i , i ∈ IK)

and Dn = (Dn
i , i ∈ IK), where An

i = (An
i (t), t ≥ 0) and Dn

i = (Dn
i (t), t ≥ 0),

the arrival process and service process for the n-th network, respectively.
We associate with the stations of the network the processes �n

i = (�n
i j , j ∈

IK), i ∈ IK , where �n
i j = (�n

i j (m),m = 1, 2, . . .), and �n
i j (m) denotes the

cumulative number of customers among the first m customers departing
station i that go directly to station j. The process �n = (�n

i j , i, j ∈ IK) is
referred to as the routing process. The state of the network at time t is de-
scribed by Q n(t) = (Q n

1 (t), . . . ,Q n
K (t)), where Q n

i (t) represents the number
of customers at station i at time t.

Precisely, the model is defined as follows. Let λn
i and μn

i , where i ∈ IK ,
be Borel functions mapping IRK

+ to IR+, with λn
i (x) = 0 if i 	∈ J , and let

λn = (λn
i , i ∈ IK) and μn = (μn

i , i ∈ IK). These functions have the mean-
ing of state-dependent arrival and service rates. Let N A,n

i = (N A,n
i (t) , t ≥

0) and N D,n
i = (N D,n

i (t) , t ≥ 0) represent nondecreasing Z+-valued pro-
cesses with trajectories in the Skorohod space D([0,∞), IR) such that
N A,n

i (0) = N D,n
i (0) = 0 and the jumps of N D,n

i are of size one. We define
N A,n

i (t) = �t� if i 	∈ J . (The latter is but a convenient convention. Since
λn

i (x) = 0 if i 	∈ J , the process N A,n
i is immaterial, as the equations below

show.) Let (�n
i j (m) ,m ∈ IN ) be Z+-valued nondecreasing processes such

that
∑K

j=1�
n
i j (m) = m and let Q n

i (0) be Z+-valued random variables. The
processes An

i , Bn
i , Dn

i , and Q n
i are defined as Z+-valued processes with trajec-

tories in D([0,∞), IR) satisfying a.s. the equations

Q n
i (t) = Q n

i (0) + An
i (t) + Bn

i (t) − Dn
i (t), (2.1a)

An
i (t) = N A,n

i

(∫ t

0
λn

i (Q n(s))ds
)
, (2.1b)

Bn
i (t) =

K∑
j=1

�n
j i

(
Dn

j (t)
)
, (2.1c)

Dn
i (t) = N D,n

i

(∫ t

0
μn

i (Q n(s))1{Q n
i (s)>0}ds

)
, (2.1d)

where t ≥ 0 and i ∈ IK . Accordingly, Q n, An, and Dn are random elements of
D([0,∞), IRK ). (Existence and uniqueness for (2.1a)–(2.1d) are addressed
in Lemma 2.1.)
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48 Lee and Puhalskii

Let P = (p i j , i, j ∈ IK) be a substochastic matrix, R = I − PT , where
I denotes the K × K -identity matrix, and p i = (p i j , j ∈ IK). We denote

Q
n
(0) =Q n(0)√

n
, N

A,n
i (t) =N A,n

i (nt) − nt√
n

,

N
D,n
i (t) =N D,n

i (nt) − nt√
n

, �
n
i (t) =�

n
i (�nt�) − p i nt√

n
,

N
A,n
i =(N

A,n
i (t), t ≥ 0), N

A,n =(N
A,n
i , i ∈ IK),

N
D,n
i =(N

D,n
i (t), t ≥ 0), N

D,n =(N
D,n
i , i ∈ IK),

�
n
i =(�

n
i (t), t ≥ 0), �

n =(�
n
i , i ∈ IK) .

We will need the following conditions:

(A0) For each n ∈ IN and each i ∈ J , lim supt→∞ N A,n
i (t)/t < ∞ a.s.

(A1) The spectral radius of matrix P is strictly less than 1.
(A2) For all i ∈ IK ,

sup
n∈IN

sup
x∈IRK

+

λn
i (nx) + μn

i (nx)
n(1 + |x|) < ∞.

(A3) For all i ∈ IK , there exist continuous functions λi (x) and μi (x) such
that

λn
i (nx)

n
→ λi (x),

μn
i (nx)

n
→ μi (x)

uniformly on compact subsets of IRK
+, as n → ∞. Furthermore, for all

x ∈ IRK
+,

λ(x) − Rμ(x) = 0,

where λ(x) = (λi (x) , i ∈ IK) and μ(x) = (μi (x) , i ∈ IK) .
(A4)

sup
n∈IN

sup
x∈IRK

+

1√
n(1 + |x|) |λn(

√
nx) − Rμn(

√
nx)| < ∞.
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Non-Markovian State-Dependent Networks 49

(A5) There exists a Lipschitz-continuous function a(x) such that

1√
n

(λn(
√

nx) − Rμn(
√

nx)) → a(x)

as n → ∞ uniformly on compact subsets of IRK
+.

(A6) As n → ∞,

(Q
n
(0),N

A,n
,N

D,n
,�

n
) ⇒ (X0,W A,W D,W �)

where X0 is a random K -vector, W A = (W A
i , i ∈ IK), W D = (W D

i , i ∈
IK), and W � = (W �

i , i ∈ IK) are continuous-path stochastic processes
with trajectories in respective spaces D([0,∞), IRK ), D([0,∞), IRK ),
and D([0,∞), IRK×K ).

Condition (A0) is needed to ensure the existence of a unique strong solu-
tion to the system of equations (2.1a)–(2.1d); see Lemma 2.1. It is certainly
fulfilled if N A,n

i is a renewal process and is almost a consequence of condition
(A6) in that the latter implies that limn→∞ N A,n

i (nt)/(nt) = 1 in probability.
Part (A1) is essentially an assumption that the network is open and under-
lies the existence of a regular Skorohod map associated with the network
data asserted in Proposition 2.1. The linear growth conditions (A2) and
(A4) are needed to ensure the tightness of certain processes. Conditions
(A2) and (A3) appear in Mandelbaum and Pats[14]. The requirement that
λ(x) = Rμ(x) in (A3) together with condition (A5) defines a critically loaded
heavy traffic regime. Condition (A6) is an assumption on the primitives. The
components of W A corresponding to i 	∈ J vanish. Conditions (A2)–(A5)
are fulfilled if the following expansions hold:

λn(x) = nλ(1)(x/n) + √
nλ(2)(x/

√
n) and μn(x)

= nμ(1)(x/n) + √
nμ(2)(x/

√
n), (2.2)

where λ(1) and μ(1) are continuous functions satisfying the linear-growth
condition such that λ(1)(x) = Rμ(1)(x), and λ(2) and μ(2) are Lipschitz-
continuous bounded functions. If the functions in (2.2) are constant, then
one obtains the standard critical loading condition that (λn − Rμn)/

√
n →

λ2 − μ2 as n → ∞; cf. Reiman[19].

Lemma 2.1. Let condition (A0) hold and maxi∈IK supx∈IRK
+
(λn

i (x) +
μn

i (x))/(1 + |x|) < ∞. Then, given Q n
i (0), N A,n

i , N D,n
i , and �n

i j equa-
tions (2.1a)–(2.1d) admit a unique strong solution Q n, which is a ZK

+-valued
stochastic process.
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50 Lee and Puhalskii

The proof is provided in the appendix. In order to state the main result,
we have to recall some properties of the Skorohod map.

Definition 2.1. Letψ ∈ D([0,∞), IRK ) be given withψ(0) ∈ IRK
+. Then the pair

(φ, η) ∈ D([0,∞), IRK ) × D([0,∞), IRK ) solves the Skorohod problem for ψ with
respect to IRK

+ and R if the following hold:

(i) φ(t) = ψ(t) + Rη(t) ∈ IRK
+, for all t ≥ 0;

(ii) for i ∈ IK, (a) ηi (0) = 0, (b) ηi is non-decreasing, and (c) ηi can increase only
when φ is on the i th face of IRK

+, that is,
∫∞

0 1{φi (s)	=0}dηi (s) = 0.

Let DIRK
+
([0,∞), IRK ) = {ψ ∈ D([0,∞), IRK ) : ψ(0) ∈ IRK

+}. If the Skoro-
hod problem has a unique solution on a domain D ⊂ DIRK

+
([0,∞), IRK ),

we define the Skorohod map 
 on D by 
(ψ) = φ . The following result
(see Harrison and Reiman[7] and also Dupuis and Ishii[4]) yields Lipschitz
continuity of the Skorohod map.

Proposition 2.1. Under assumption (A1), the Skorohod map 
 is well defined on
DIRK

+
([0,∞), IRK ) and is Lipschitz continuous in the following sense: There exists a

constant L > 0 such that for all T > 0 and ψ1, ψ2 ∈ DIRK
+
([0,∞), IRK ),

sup
t∈[0,T]

|
(ψ1)(t) − 
(ψ2)(t)| ≤ L sup
t∈[0,T]

|ψ1(t) − ψ2(t)|.

Consequently, both φ and η are continuous functions of ψ .

The Lipschitz continuity of the Skorohod map and of the function a(x)
imply that the equation

X (t) = 

(
X0 +

∫ ·

0
a(X (s))ds + M(·))(t), (2.3)

where

Mi (t) = W A
i (λi (0)t) +

K∑
j=1

W �
j i (μ j (0)t) −

K∑
j=1

(δi j − p ji )W D
j (μ j (0)t),

(2.4)
has a unique strong solution (cf.[4]). For t ≥ 0 and i ∈ IK , let X n

i (t) =
Q n

i (t)/
√

n. We also define X = (X (t), t ≥ 0) and X n = ((X n
i (t), i =

1, 2, . . . ,K), t ≥ 0). The proof of the following theorem is given in the next
section.
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Non-Markovian State-Dependent Networks 51

Theorem 2.1. Let conditions (A0)–(A6) hold. Then X n ⇒ X , as n → ∞.

Most of the results on diffusion approximation in critical loading (see,
e.g., Harrison and Reiman[7] and Kushner[11]) formulate the heavy traffic
condition in terms of rates that are on order one and then consider scaled
processes Q n(nt)/

√
n. In the scaling here, as in Yamada[21] and Mandelbaum

and Pats[14], the time parameter is left unchanged, and the factor of n is ab-
sorbed in the arrival and service rates. This is more convenient notationally;
however, in the application to generalized Jackson networks in Section 4, we
work with the conventional scaling. It may be instructive to note, though,
that if one looked for limits for processes Q n(nt)/

√
n, then the analogues of

expansions (2.2) would be

λn(x) = λ(1)(x/n) + (1/
√

n)λ(2)(x/
√

n) and

μn(x) = μ(1)(x/n) + (1/
√

n)μ(2)(x/
√

n),

whereas the assumptions of Yamada[21] would amount to the expansions

λn(x) = λ(1)(x/
√

n) + (1/
√

n)λ(2)(x/
√

n) and

μn(x) = μ(1)(x/
√

n) + (1/
√

n)μ(2)(x/
√

n).

Theorems 1 and 2 in Yamada[21] obtain diffusion processes with state-
dependent drift and diffusion coefficients as the limits. Theorem 1 concerns
the Markovian model. It is required that there be at least one nonzero exter-
nal arrival process. The arrival and service rates at a station may depend on
the queue length at that station only. Theorem 2 concerns a Jackson network
with external arrival processes being Poisson processes with state-dependent
rates. In the proof of Theorem 2, the process d j

n(t) claimed to be a locally
square integrable martingale on p. 980 does not seem to have the asserted
property. The model itself is defined by postulating certain martingale prop-
erties of the arrival, service, and customer transfer processes. No description
in terms of the primitive processes is provided, nor is the issue of the assump-
tions being self-consistent addressed. The gap is filled in by Mandelbaum
and Pats[14], although the authors admit the proof is missing technical de-
tail; see p. 623 in Mandelbaum and Pats[14]. Mandelbaum and Pats[14] give
few details with regard to the existence and uniqueness of a solution to (1.1)
under linear growth conditions on the rates. Mandelbaum and Pats[14] and
Kushner[11] allow the routing matrix to be state-dependent. Mandelbaum
and Pats[14] appeal to Theorem 5.1 and Corollary 5.2 in Dupuis and Ishii[5] to
substantiate the existence and uniqueness for the associated Skorohod prob-
lem; however, those results assume bounded domains, so they do not apply.
The authors’ attempt on p. 628 to recast the problem as a time-dependent
reflection is unconvincing. Kushner[11], in their proofs of Theorem 1.1 on
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52 Lee and Puhalskii

p. 309 and Theorem 2.1 on p. 318, relies on their Theorem 5.1 on p. 123 and
Theorem 5.2 on p. 124, which, in turn, are based on Theorem 2.2 in Dupuis
and Ishii[4]. However, those results pertain to reflection directions that are
constant on the faces, so they do not apply to state-dependent reflection
directions. Kushner[11] does not address the issue of the model being well
defined either. Nor are we convinced by the substantiation of the martingale
properties claimed to hold on p. 310. Besides, the hypotheses of Theorem
1.1 on p. 309 and Theorem 2.1 on p. 318 of Kushner[11] are missing the con-
dition of the drift and diffusion coefficients being Lipschitz continuous. The
functional central limit theorem on p. 584 in Mandelbaum and Pats[14], for
the case of critical loading, is missing conditions (A4) and (A5). The proof
given in that paper is carried out for a special case where those conditions
are met. On the other hand, the condition that the first moments of the
initial queue lengths be finite assumed by Mandelbaum and Pats[14] can be
left out.

3. PROOF OF THEOREM 2.1

We assume conditions (A0)–(A6) throughout this section. We introduce
the “centred” processes as follows: For i ∈ IK and t ≥ 0,

Mn
i (t) = MA,n

i (t) + MB,n
i (t) − MD,n

i (t), (3.1a)

where

MA,n
i (t) = N A,n

i

(∫ t

0
λn

i (Q n(s))ds
)

−
∫ t

0
λn

i (Q n(s))ds, (3.1b)

MB,n
i (t) =

K∑
j=1

(
�n

j i

(
Dn

j (t)
) − p ji Dn

j (t)
)
, (3.1c)

and

MD,n
i (t) = N D,n

i

(∫ t

0
μn

i (Q n(s))1{Q n
i (s)>0}ds

)
−
∫ t

0
μn

i (Q n(s))1{Q n
i (s)>0}ds

+
K∑

j=1

p ji

(
N D,n

j

(∫ t

0
μn

j (Q n(s))1{Q n
j (s)>0}ds

)

−
∫ t

0
μn

j (Q n(s))1{Q n
j (s)>0}ds

)
. (3.1d)
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Non-Markovian State-Dependent Networks 53

We can rewrite the evolution (2.1a) as

Q n
i (t) = Q n

i (0) +
∫ t

0

⎡
⎣λn

i (Q n(s)) +
K∑

j=1

p jiμ
n
j (Q n(s)) − μn

i (Q n(s))

⎤
⎦ ds

+ Mn
i (t) + [RY n(t)]i ,

where Y n(t) = (Y n
i (t) , i ∈ IK) and

Y n
i (t) =

∫ t

0
1{Q n

i (s)=0}μn
i (Q n(s)) ds, i ∈ IK . (3.2)

We note that (Y n
i (t), t ≥ 0) is a continuous-path non-decreasing process with

Y n
i (0) = 0, which increases only when Q n

i (t) = 0, i.e.,
∫∞

0 1{Q n
i (t)	=0}dY n

i (t) =
0 a.s. Let

an(x) = λn(x) − Rμn(x). (3.3)

Then the state evolution can be expressed succinctly by the following vector
equation:

Q n(t) = Q n(0) +
∫ t

0
an(Q n(s))ds + Mn(t) + RY n(t), t ≥ 0, (3.4)

where Mn(t) = (Mn
i (t) , i ∈ IK). It can also be described in terms of the

Skorohod map:

Q n(t) = 


(
Q n(0) +

∫ ·

0
an(Q n(s))ds + Mn(·)

)
(t), t ≥ 0. (3.5)

The following tightness result is essential.

Lemma 3.1. The sequence of processes (Mn(t)/
√

n, t ≥ 0) is C-tight.

Proof. Let

θn(x) = 1 +
K∑

i=1

(μn
i (x) + λn

i (x)) , μ̂n
i (x) = μn

i (x)
θn(x)

, λ̂n
i (x) = λn

i (x)
θn(x)

,

(3.6)
and

τ n(t) = inf
{

s :
∫ s

0
θn(Q n(u)) du > t

}
. (3.7)
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54 Lee and Puhalskii

We note that τ n(t) is finite-valued, strictly increasing, absolutely continuous
with respect to Lebesgue measure, dτ n(t)/dt = 1/θn(Q n(τ n(t)) for almost
all t, and τ n(t) → ∞ as t → ∞; cf. p. 307 in Ethier and Kurtz[6]. Substitution
into (2.1a)–(2.1d) shows that the process Q̂ n = (Q̂ n(t) , t ≥ 0) defined by
Q̂ n(t) = Q n(τ n(t)) satisfies a.s. the equations

Q̂ n
i (t) = Q̂ n

i (0) + N A,n
i

(∫ t

0
λ̂n

i (Q̂ n(s))ds
)

+
K∑

j=1

�n
j i

(
N D,n

j

(∫ t

0
μ̂n

j (Q̂ n(s))1{Q̂ n
j (s)>0}ds

))

− N D,n
i

(∫ t

0
μ̂n

i (Q̂ n(s))1{Q̂ n
i (s)>0}ds

)
, t ≥ 0. (3.8)

Also, Q̂ n(0) = Q n(0). Let τ̂ n(t) = inf{s : τ n(s) > t} represent the inverse of
τ n. We have that

Q n(t) = Q̂ n(τ̂ n(t)). (3.9)

One can also see that

τ̂ n(t) = inf

{
s :

∫ s

0

1

θn(Q̂ n(u))
du > t

}
. (3.10)

By (3.8), on noting that λ̂n
i (x) ≤ 1,

K∑
i=1

Q̂ n
i (t) ≤

K∑
i=1

Q̂ n
i (0) +

K∑
i=1

N A,n
i (t) . (3.11)

By (3.11) and (A6),

lim
r →∞ lim sup

n→∞
P

(
sup
s≤t

K∑
i=1

1
n

Q̂ n
i (ns) > r

)
= 0. (3.12)

By (A2), (3.6), (3.10), and (3.11), for some H > 0,

P(τ̂ n(t) > nT) ≤ P

(∫ T

0

n

H (n + ∑K
i=1 Q̂ n

i (0) + ∑K
i=1 N A,n

i (nu))
du ≤ t

)
.

(3.13)
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Non-Markovian State-Dependent Networks 55

Since
∑K

i=1 Q̂ n
i (0)/n → 0 and

∑K
i=1 N A,n

i (nu)/n → Ku in probability as n →
∞, the right-hand side of (3.13) goes to zero for T > e KH t . Since by (3.9),

P

(
sup
s≤t

K∑
i=1

1
n

Q n
i (s) > r

)
≤ P(τ̂ n(t)>ne KH t) + P

(
sup

s≤e KH t

K∑
i=1

1
n

Q̂ n
i (ns) > r

)
,

we conclude by (3.12) that

lim
r →∞ lim sup

n→∞
P

(
sup
s≤t

K∑
i=1

1
n

Q n
i (s) > r

)
= 0. (3.14)

It follows by (A2) that, for i ∈ IK ,

lim
r →∞ lim sup

n→∞
P
(∫ t

0

(
1
n
λn

i (Q n
i (s)) + 1

n
μn

i (Q n
i (s))

)
ds > r

)
= 0 (3.15)

and that, for δ > 0, ε > 0, T > 0,

lim
δ→0

lim sup
n→∞

P

(
sup

t∈[0,T]

∫ t+δ

t

(
1
n
λn

i (Q n
i (s)) + 1

n
μn

i (Q n
i (s))

)
ds > ε

)
= 0.

(3.16)
By (3.1b), we have that, for γ > 0, δ > 0, ε > 0, T > 0, and r > 0,

P

⎛
⎜⎜⎜⎝ sup

s,t∈[0,T]:
|s−t |≤δ

∣∣∣∣ 1√
n

MA,n
i (t) − 1√

n
MA,n

i (s)
∣∣∣∣ > γ

⎞
⎟⎟⎟⎠

≤ P
(∫ T

0

1
n
λn

i (Q n
i (s)) ds > r

)
+ P

(
sup

t∈[0,T]

∫ t+δ

t

1
n
λn

i (Q n
i (s)) ds > ε

)

+P

⎛
⎜⎜⎜⎝ sup

s,t∈[0,r ]:
|s−t |≤ε

∣∣∣∣N A,n
i (t) − N

A,n
i (s)

∣∣∣∣ > γ

⎞
⎟⎟⎟⎠ .
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56 Lee and Puhalskii

By (A6), the process W A being continuous, (3.15), and (3.16),

lim
δ→0

lim sup
n→∞

P

⎛
⎜⎜⎜⎜⎝ sup

s,t∈[0,T]:

|s−t |≤δ

∣∣∣∣ 1√
n

MA,n
i (t) − 1√

n
MA,n

i (s)
∣∣∣∣ > γ

⎞
⎟⎟⎟⎟⎠ = 0.

Hence, the sequences of processes (MA,n
i (t)/

√
n, t ≥ 0) are C-tight. A similar

argument shows that the sequences of processes (MD,n
i (t)/

√
n, t ≥ 0) and

(MB,n
i (t)/

√
n, t ≥ 0) are C-tight, so, by (3.1a), the sequence of processes

(Mn(t)/
√

n, t ≥ 0) is C-tight. �
We identify now the limit points in distribution of M

n = (Mn(t)/
√

n,
t ≥ 0).

Lemma 3.2. The sequence of processes M
n

converges in distribution, as n → ∞,
to M.

Proof. From Lemma 3.1, Mn(t)/n → 0 in probability uniformly over
bounded intervals. By (A2) and (3.3), for some H > 0, for all n
and x, |an(nx)| ≤ H n(1 + |x|). By (3.14), the sequence of processes
(
∫ t

0 (1/n)an(Q n(s))ds, t ≥ 0) is C-tight. By (3.5), (A6), Prohorov’s theo-
rem, and the continuity of the Skorohod map, the sequence of processes
(Q n(t)/n, t ≥ 0) is C-tight. If (q (t), t ≥ 0) is a limit point in distribution,
then, by continuity,

q (t) = 


(∫ ·

0
(λ(q (s)) − Rμ(q (s)))ds

)
(t) .

Since by (A3), λ(x) − Rμ(x) = 0, we must have that q (t) = 0, which implies
that the sequence Q n

i (t)/n tends to zero as n → ∞ in probability uniformly
on bounded intervals. By (A3) and (3.3),

∫ t
0 (1/n)an(Q n(s))ds → 0 in prob-

ability. Since by (3.4) and R being nonsingular, Y n is a continuous function
of (Q n(0) + ∫ t

0 an(Q n(s))ds + Mn(t), t ≥ 0), we have that Y n(t)/n → 0 in
probability uniformly over bounded intervals, so by (3.2), for i ∈ IK ,

1
n

∫ t

0
μn

i (Q n(s))1{Q n
i (s)=0}ds → 0 in probability as n → ∞. (3.17)
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Non-Markovian State-Dependent Networks 57

We also have by (A3) and the convergence of Q n(t)/n to the zero function
that

1
n

∫ t

0
λn

i (Q n(s)) ds → λi (0)t in probability as n → ∞ (3.18a)

and

1
n

∫ t

0
μn

i (Q n(s)) ds → μi (0)t in probability as n → ∞. (3.18b)

Since by (A6), N D,n
i (nt)/n → t in probability uniformly over bounded

intervals as n → ∞, by (2.1d), (3.17), and (3.18b),

Dn
i (t)
n

→ μi (0)t in probability as n → ∞. (3.19)

On recalling the definitions in (3.1b)–(3.1d), we conclude from
the convergences in (A6), (3.18a), (3.18b), and (3.19) that the pro-
cesses (MA,n/

√
n,MB,n/

√
n,MD,n/

√
n) jointly converge in distribution to

(MA,MB,MD), where MA
i (t) = W A

i (λi (0)t), MB
i (t) = ∑K

j=1 W �
j i (μ j (0)t),

MD
i (t) = ∑K

j=1(δi j − p ji )W D
j (μ j (0)t). Therefore, by (3.1a) and (2.4), the

processes M
n

converge in distribution to M . �
Proof of Theorem 2.1. We note that by (3.5),

X n(t) = 


(
X n(0) +

∫ ·

0

1√
n

an(
√

nX n(s))ds + M
n
(·)

)
(t), t ≥ 0. (3.20)

By the Lipschitz continuity of the Skorohod map, (3.3), and (A4), for T > 0
and suitable H > 0 and L > 0,

sup
t∈[0,T]

|X n(t)| ≤ L|X n(0)| + L sup
t∈[0,T]

∫ t

0

1√
n

|an(
√

nX n(s))|ds

+L
1√
n

sup
t∈[0,T]

|Mn(t)|

≤ L|X n(0)| + LH
∫ T

0

(
1 + sup

s≤t
|X n(s)|

)
dt

+L
1√
n

sup
t∈[0,T]

|Mn(t)|.
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58 Lee and Puhalskii

Gronwall’s inequality, the convergence of the X n(0) in (A6), and Lemma
3.2 yield

lim
r →∞ lim sup

n→∞
P

(
sup

t∈[0,T]
|X n(t)| > r

)
= 0,

so, by (3.3) and (A5), the sequence of processes
(
∫ t

0 an(
√

nX n(s))/
√

n ds , t ≥ 0) is C-tight.
By (3.20), the convergence of the X n(0), Lemma 3.2, (A5), Prohorov’s

theorem, and the continuity of the Skorohod map, the sequence of processes
(X n(t), t ≥ 0) is C-tight and every limit point (X̃ (t), t ≥ 0) for convergence
in distribution satisfies the equation

X̃ (t) = 


(
X (0) +

∫ ·

0
a(X̃ (s))ds + M (·)

)
(t), t ≥ 0.

The uniqueness of a solution to the Skorohod problem implies that X̃ (t) =
X (t). �

4. GENERALIZED JACKSON NETWORKS WITH

STATE-DEPENDENT RATES

In this section, we consider an application to generalized Jackson
networks in conventional scaling. We assume as given mutually indepen-
dent sequences of i.i.d. nonnegative random variables {ui

j (n), i ≥ 1} and
{vi

k(n), i ≥ 1} for j ∈ J ⊆ IK and k ∈ IK . For the nth network, the random
variable ui

j (n) represents the ith exogenous interarrival time at station j,
while vi

k(n) represents the ith service time at station k. The variables p i j rep-
resent the probabilities of a customer leaving station i being routed directly
to station j, which are held constant. The routing decisions, interarrival and
service times, and the initial queue length vector are mutually independent.

We define

λn
j = (

E
[
u1

j (n)
])−1

> 0, an
j = Var

(
u1

j (n)
) ≥ 0, j ∈ J , and

μn
k = (

E[v1
k (n)]

)−1
> 0, sn

k = Var
(
v1

k (n)
) ≥ 0, k ∈ IK,

with all these quantities assumed finite and the set J assumed nonempty. It
is convenient to let λn

j = 1 and an
j = 0 for j 	∈ J .

Let N̂ Â,n
j (t) = max{i ′ :

∑i ′
i=1 ui

j (n) ≤ t} for j ∈ J and N̂ D̂,n
k (t) =

max{i ′ :
∑i ′

i=1 vi
k(n) ≤ t} for k ∈ IK . We may interpret the process

(N̂ Â,n
j (t), t ≥ 0) as a nominal arrival process and the random variables vi

k(n)

D
ow

nl
oa

de
d 

by
 [

C
hi

ho
on

 L
ee

] 
at

 1
1:

56
 0

6 
Fe

br
ua

ry
 2

01
5 



Non-Markovian State-Dependent Networks 59

as the amounts of work needed to serve the customers. Suppose that ar-
rivals are speeded up (or delayed) by a function λ̂n

i (x), where i ∈ J , and
the service is performed at rate μ̂n

k (x), where k ∈ IK , when the queue length

vector is x. As in Section 3, we let N̂ Â,n
i (t) = �t� and λ̂n

i (x) = 0 for i 	∈ J . In
analogy with (2.1a)–(2.1d) the queue lengths at the stations at time t, which
we denote by Q̂ n

i (t), are assumed to satisfy the equations

Q̂ n
i (t) = Q̂ n

i (0) + Ân
i (t) + B̂n

i (t) − D̂n
i (t),

Ân
i (t) = N̂ Â,n

i

(∫ t

0
λ̂n

i (Q̂ n(s))ds
)
,

B̂n
i (t) =

K∑
j=1

�̂n
j i

(
D̂n

j (t)
)
,

D̂n
i (t) = N̂ D̂,n

i

(∫ t

0
μ̂n

i (Q̂ n(s))1{Q̂ n
i (s)>0}ds

)
,

where

�̂n
j i (m) =

m∑
l=1

χn
j i (l),

with {(χn
j i(l), i = 1, 2, . . . ,K), l = 1, 2, . . .} being Bernoulli random vari-

ables that are mutually independent for different j and l and are such that
P(χn

j i (l) = 1) = p ji .
If we introduce the random variables Q n

i (t) = Q̂ n
i (nt), An

i (t) =
Ân

i (nt), Bn
i (t) = B̂n

i (nt), Dn
i (t) = D̂n

i (nt), N A,n
i (t) = N̂ Â,n

i (t/λn
i ), N D,n

i (t) =
N̂ D̂,n

i (t/μn
i ), and �n

j i (m) = �̂n
j i (m), and functions λn

i (x) = nλn
i λ̂

n
i (x) and

μn
i (x) = nμn

i μ̂
n
i (x), then we can see that they satisfy equations (2.1a)–(2.1d).

Condition (A0) holds as N A,n
i (t)/t → 1 and N D,n

i (t)/t → 1 a.s. as t → ∞.
Assume that Q̂ n(0)/

√
n ⇒ X0, and for k ∈ IK , j ∈ J ,

λn
j → λ j , an

j → a j ,

μn
k → μk, sn

k → sk,

as n → ∞, and also that

max
k∈IK

sup
n≥1

E
(
v1

k (n)
)2+ε + max

j∈J
sup
n≥1

E
(
u1

j (n)
)2+ε

< ∞ for some ε > 0.
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60 Lee and Puhalskii

Then condition (A6) holds with W A
j = √a jλ j BA

j for j ∈ J , W A
j (t) = 0 for

j /∈ J , W D
k = √

skμkBD
k for k ∈ IK , and with W �

i being a K -dimensional Brow-
nian motion with covariance matrix EW �

ik (t)W �
i j (t) = (p i jδ j k − p i j p ik)t ,

where BA
j and BD

k are standard Brownian motions and the processes BA
j ,

BD
k , and W �

i are mutually independent.
Let us assume that the following versions of conditions (A2)–(A5) hold:

(̂A2) For each i ∈ IK ,

sup
n∈IN

sup
x∈IRK

+

(
λ̂n

i (nx)
1 + |x| + μ̂n

i (nx)
1 + |x|

)
< ∞.

(̂A3) There exist continuous functions λ̂i (x) and μ̂i (x) such that

λ̂n
i (nx) → λ̂i (x), μ̂n

i (nx) → μ̂i (x)

uniformly on compact subsets of IRK
+, as n → ∞. Furthermore, for x ∈

IRK
+,

λ(x) − Rμ(x) = 0,

where λi (x) = λi λ̂i (x) and μi (x) = μi μ̂i (x),
(̂A4)

sup
n∈IN

sup
x∈IRK

+

√
n

|λn
(
√

nx) − Rμn(
√

nx)|
1 + |x| < ∞ .

(̂A5) There exists a Lipschitz-continuous function â(x) such that

√
n(λ

n
(
√

nx) − Rμn(
√

nx)) → â(x)

as n → ∞ uniformly on compact subsets of IRK
+, where λ

n
i (x) = λn

i λ̂
n
i (x)

and μn
i (x) = μn

i μ̂
n
i (x).

Then the process M in (2.3) and (2.4) is a K -dimensional Brownian
motion with covariance matrix A that has entries for i ∈ IK ,

Ai i = λ̂i (0)λ3
i ai + μ̂i (0)μ3

i si (1 − 2p ii )

+
K∑

j=1

μ̂ j (0)μ j p j i
(
1 − p ji + p jiμ

2
j s j

)
,
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Non-Markovian State-Dependent Networks 61

and for 1 ≤ i < j ≤ K ,

Ai j = −
[
μ̂i (0)μ3

i si p i j + μ̂ j (0)μ3
j s j p j i +

K∑
k=1

μ̂k(0)μkp ki p k j (1 − μ2
k sk)

]
.

An application of Theorem 2.1 yields the following result.

Corollary 4.1. If, in addition to the assumed hypotheses, condition (A1) holds, then
the processes (Q̂ n(nt)/

√
n, t ≥ 0) converge in distribution to the process (X (t), t ≥

0) that satisfies the equation

X (t) = 


(
X0 +

∫ ·

0
â(X (s))ds + A1/2B(·)

)
(t),

where B(·) is a K-dimensional standard Brownian motion.

Remark 4.1. The conditions on the asymptotics of the arrival and service
rates essentially boil down to the assumptions that the following expan-
sions hold: λ

n
(x) = λ

(1)
(x/n) + λ

(2)
(x/

√
n)/

√
n and μn(x) = μ(1)(x/n) +

μ(2)(x/
√

n)/
√

n with suitable functions λ
(1)

, λ
(2)

, μ(1), and μ(2).

Remark 4.2. If, in addition, the assumption of unit rates is made, that
is, λ̂n

j (x) = 1 for j ∈ J and μ̂n
k (x) = 1 for k ∈ IK , then the limit process is

a K -dimensional reflected Brownian motion on the positive orthant with
infinitesimal drift â(0) and covariance matrix A, and the reflection matrix
R = I − PT , as in Theorem 1 of Reiman[19].

Remark 4.3. In order to extend applicability, one may consider inde-
pendent sequences of weakly dependent random variables {ui

j (n), i ≥ 1},
{vi

k(n), i ≥ 1} for j ∈ J ⊆ IK and k ∈ IK . Under suitable moment and
mixing conditions which imply the invariance principle (cf. Herrndorf[8],
Peligrad[17], Jacod and Shiryaev[9]), Corollary 4.1 continues to hold.

5. A CASE STUDY: A TANDEM QUEUE OF HUMAN SERVERS

In production systems with human servers productivity may depend on
the workload. With low workload, the productivity may be low because of
“laziness,” whereas when the workload is too high, the productivity may be
adversely affected by the associated “stress”; see van Ooijen and Bertrand[15]

and references therein. (More generally, the Yerkes-Dodson law has it that
the relation between performance and arousal is given by an inverted U-
shaped curve.) Motivated by empirical evidence, van Ooijen and Bertrand[15]

use a triangle-shaped function to express the dependence of productivity on
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62 Lee and Puhalskii

FIGURE 1 The tandem queue.

the workload and investigate the effect of controlling the arrival rate. We
will adopt a similar model. We consider two service stations in series (see
Figure 1).

Customers who depart from station 1 are routed to station 2 and leave the
tandem queue upon completion of service at station 2. Exogenous arrivals
occur at both stations. In the nth tandem queue the service rate at station
i when the queue length at that station equals xi is represented by μn

i (xi ),
where i = 1, 2, and the compression of the interarrival times between the
exogenous arrivals is represented by λn

i (x1, x2). The iid service requirements
of individual jobs at station i are assumed to have mean 1/μi and variance si ;
hence, the service completion rate at station i is μiμ

n
i (xi ). The iid nominal

interarrival times have mean 1/λi and variance ai so that the actual arrival
rate is λiλ

n
i (x1, x2).

We assume further that

μn
i (xi ) = μ̃1i

(
xi

n

)
+ 1√

n
μ̃2i

(
xi√

n

)
,

λn
i (x1, x2) = λ̃1i

(
x1

n
,

x2

n

)
+ 1√

n
λ̃2i

(
x1√

n
,

x2√
n

)
.

The functions μ̃1i and μ̃2i have triangle-shaped graphs as depicted in
Figure 2. The exogenous arrival rates are controlled in order to ensure high
utilization of the servers, on the one hand, and not to increase the waiting
time excessively, on the other hand, for which purpose the critical loading
condition is maintained:

(
λ1λ̃11(x1, x2)
λ2λ̃12(x1, x2)

)
=
(

1 0
−1 1

)(
μ1μ̃11(x1)
μ2μ̃12(x2

)) .

In order for these equations to have a nonnegative solution for λ̃12(x1, x2),
we need to require that minx2 μ12μ̃12(x2) ≥ maxx1 μ11μ̃11(x1).

Let Q n
i (t) denote the queue length at station i at time t. As-

suming that Q n
i (0) = 0, we have, by Corollary 4.1, that the processes
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Non-Markovian State-Dependent Networks 63

FIGURE 2 Dependence of the service rate on the queue length.

(Q n
1 (nt)/

√
n,Q n

2 (nt)/
√

n) converge in distribution to the IR2
+-valued process

(
X1(t)
X2(t)

)
=
∫ t

0

((
λ1λ̃21(X1(s),X2(s))
λ2λ̃22(X1(s),X2(s))

)
−
(

1 0
−1 1

)(
μ1μ̃21(X1(s))
μ2μ̃22(X2(s)

) )) ds

+A1/2
(

B1(t)
B2(t)

)
+
(

1 0
−1 1

)(Y1(t)
Y2(t)

)
,

where B1(t) and B2(t) are independent standard Brownian motions, Y1(t)
and Y2(t) are nondecreasing continuous path processes such that Yi (0) = 0
and

∫ t
0 Xi (s) dYi (s) = 0, for i = 1, 2, and the 2 × 2 matrix A has entries

A11 = λ̃11λ
3
1a1 + μ̃11μ

3
1s1, A22 = λ̃12λ

3
2a2 + μ̃12μ

3
2s2 + μ̃11μ

3
1s1,

A21 =A12 = −μ̃11μ
3
1s1.

APPENDIX

Proof of Lemma 2.1. The proof is an adaptation of the one in Puhalskii and
Simon[18] (Lemma 2.1) and employs the approach of Ethier and Kurtz[6]

(Theorem 4.1, p. 327). We saw in the proof of Lemma 3.1 that if Q n(t)
satisfies (2.1a)–(2.1d), then Q̂ n(t) = Q n(τ n(t)), where τ n(t) is defined by
(3.6) and (3.7), satisfies (3.8). We now show that if Q̂ n(t) satisfies (3.8), then
Q̂ n(τ̂ n(t)), where τ̂ n(t) is defined by (3.10), satisfies (2.1a)–(2.1d). The
random variable τ̂ n(t) is well defined for all t a.s. because, by hypotheses, for
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64 Lee and Puhalskii

a suitable constant Ln, θn(x) ≤ Ln(1 + |x|) so that, by (3.11),

∫ s

0

1

θn(Q̂ n(u))
du ≥ 1

Ln

∫ s

0

1

1 + ∑K
i=1 Q̂ n

i (u)
du

≥ 1
Ln

∫ s

0

1

1 + ∑K
i=1 Q̂ n

i (0) + ∑K
i=1 N A,n

i (u)
du. (A1)

Since lim supt→∞ N A,n
i (t)/t < ∞ a.s., the rightmost integral in (A1) tends

to infinity as s → ∞ a.s., hence, so does the leftmost integral, which proves
the claim. In addition, τ̂ n(t) is absolutely continuous, strictly increasing,
d τ̂ n(t)/dt = θn(Q̂ n(τ̂ n(t)) a.e., and τ̂ n(t) → ∞ as t → ∞ a.s. In particular,∫ t

0 θ
n(Q̂ n(τ̂ n(s)) ds < ∞. Substitution in (3.8) shows that the random vari-

ables Q̂ n
i (τ̂ n(t)) for i ∈ IK satisfy the equations

Q̂ n
i (τ̂ n(t)) = Q̂ n

i (0) + N A,n
i

(∫ t

0
λn

i (Q̂ n(τ̂ n(s)))ds
)

+
K∑

j=1

�n
j i

(
N D,n

j

(∫ t

0
μn

j (Q̂ n(τ̂ n(s)))1{Q̂ n
j (τ̂n(s))>0}ds

))

−N D,n
i

(∫ t

0
μn

i (Q̂ n(τ̂ n(s)))1{Q̂ n
i (τ̂n(s))>0}ds

)
, t ≥ 0.

Therefore, existence and uniqueness for (2.1a)–(2.1d) holds if and only if
existence and uniqueness holds for (3.8). The existence and uniqueness for
(3.8) follows by recursion on the jump times of Q̂ n. More specifically, we
define the processes Q̂ n,� = (Q̂ n,�(t), t ≥ 0) with Q̂ n,�(t) = (Q̂ n,�

i (t), i ∈ IK)
by Q̂ n,0

i (t) = Q̂ n
i (0) and, for � = 1, 2, . . ., by

Q̂ n,�
i (t) =

(
Q̂ n

i (0) + N A,n
i

(∫ t

0
λ̂n

i (Q̂ n,�−1(s))ds
)

+
K∑

j=1

�n
j i

(
N D,n

j

(∫ t

0
μ̂n

j (Q̂ n,�−1(s))1{Q̂ n,�−1
j (s)>0}ds

))

−N D,n
i

(∫ t

0
μ̂n

i (Q̂ n,�−1(s))1{Q̂ n,�−1
i (s)>0}ds

))+
. (A2)

The processes Q̂ n,� are well defined, are ZK
+-valued, and have right contin-

uous trajectories with left-hand limits. Let τ n,� represent the time epoch of
the �th jump of Q̂ n,� with τ n,0 = 0. By (A2), Q̂ n,1(t) = Q̂ n,0(0) if t < τ n,1.
Therefore, Q̂ n,2(t) = Q̂ n,1(t) if t < τ n,1. It follows that (Q̂ n,1(t), t ≥ 0)
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Non-Markovian State-Dependent Networks 65

and (Q̂ n,2(t), t ≥ 0) experience the first jump at the same time epoch
and the jump size is the same for both processes, so τ n,1 < τ n,2 and
Q̂ n,2(t) = Q̂ n,1(t ∧ τ n,1) for t < τ n,2. We define Q̂ n(t) = Q̂ n,0(0) for t < τ n,1

and Q̂ n(t) = Q̂ n,1(t) for τ n,1 ≤ t < τ n,2. Since the processes N D,n
i have unit

jumps, we have that (3.8) holds for t < τ n,2. By induction, for arbitrary � ∈ IN ,
we obtain that τ n,� < τ n,�+1 and Q̂ n,�+1(t) = Q̂ n,�(t ∧ τ n,�) for t < τ n,�+1. We
let Q̂ n(t) = Q̂ n,�(t) for τ n,� ≤ t < τ n,�+1. The process Q̂ n is defined consis-
tently and (3.8) holds for t ∈ ∪∞

�=1[τ n,�−1, τ n,�). If τ n,�+1 = ∞ for some �,
then we let Q̂ n(t) = Q̂ n,�(t) for all t ≥ τ n,�.

Suppose that τ n,� < ∞ for all �. Then Q̂ n(t) has been defined for all
t < τ n,∞ = lim�→∞ τ n,� and satisfies (3.8) for these values of t. We now show
that τ n,∞ = ∞. The set of the time epochs of the jumps of Q̂ n is a subset of
the set of the time epochs of the jumps of the process Q̃ n = (Q̃ n(t), t ≥ 0),
where

Q̃ n(t) =
K∑

i=1

(
N A,n

i

(∫ t

0
λ̂n

i (Q̂ n(s))ds
)

+ N D,n
i

(∫ t

0
μ̂n

i (Q̂ n(s))1{Q̂ n
i (s)>0}ds

))
.

Since the process Q̂ n has infinitely many jumps, so does the process Q̃ n. Since
λ̂n

i (x) ≤ 1 and μn
i (x) ≤ 1, the lengths of time between the jumps of Q̃ n are

not less than the lengths of time between the corresponding jumps of the
process

(∑K
i=1 N A,n

i (t) + ∑K
i=1 N D,n

i (t), t ≥ 0
)
.The process

(∑K
i=1 N A,n

i (t) +∑K
i=1 N D,n

i (t), t ≥ 0
)

having infinitely many jumps and being finite for all t,
the time epochs of the jumps of that process tend to infinity as the jump
numbers tend to infinity. Thus, τ n,∞ = ∞ a.s.

The provided construction shows that Q̂ n is a suitably measurable func-
tion of Q̂ n(0), N A,n, N D,n, and �n, so it is a strong solution. The unique-
ness is proved similarly. More specifically, suppose Q̆ n is another solution
to (3.8). Let τ̆ n,� represents the time epoch of the �th jump of Q̆ n. We
also let τ̆ n,0 = 0. Suppose that Q̆ n(t) = Q̂ n(t) for t ≤ τ n,� which is true for
� = 0. Then Q̆ n(t) = Q̂ n(t) = Q̂ n(τ n,�) for t < τ n,�+1 ∧ τ̆ n,�+1. Hence, the in-
tegrals from 0 to τ n,�+1 ∧ τ̆ n,�+1 on the right of (3.8) are the same for Q̆ n

and Q̂ n, which implies that Q̆ n(τ n,�+1 ∧ τ̆ n,�+1) = Q̂ n(τ n,�+1 ∧ τ̆ n,�+1). Since
one of the processes jumps at τ n,�+1 ∧ τ̆ n,�+1 the other must jump too, so
τ n,�+1 = τ̆ n,�+1. �
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